

Total No. of printed pages = 8

**END SEMESTER (REGULAR/RETEST)
EXAMINATION, JUNE – 2024**

Semester : 2nd

Subject Code : Me-201

ENGINEERING MECHANICS

Full Marks – 70

Time – Three hours

The figures in the margin indicate full marks
for the questions.

1. Fill in the blanks of the following : $1 \times 5 = 5$
 - The value of Kinetic friction slightly decreases with the _____ in speed.
 - The centre of gravity of a triangle lies at the point of intersection of _____.
 - The second moment of a force is also said to be _____.
 - For reversible machine the efficiency is _____ than 50%.
 - The unit of moment is same as unit of _____.

[Turn over

2. Choose correct answers from the following :

1×5=5

(a) The maximum M.A. of a lifting machine is

(i) m (ii) $m \times VR$
(iii) $1/m$ (iv) $1/(m \times VR)$

(b) The unit of work done is

(i) Watt (ii) Horse power
(iii) Joule (iv) Newton

(c) Section Modulus for a circular section of diameter 'd' is

(i) $\frac{\pi d^3}{32}$ (ii) $\frac{\pi d^4}{32}$
(iii) $\frac{\pi d^4}{64}$ (iv) None of these

(d) The centre of gravity of a semicircle lies on its vertical radius at a distance of

(i) $\frac{4r}{3\pi}$ (ii) $\frac{3r}{4\pi}$
(iii) $\frac{4\pi}{3r}$ (iv) $\frac{3\pi}{4r}$

(e) Two equal like parallel forces acting some distant apart forms a

(i) Moment (ii) Couple
(iii) Torque (iv) Moment of Inertia.

3. State True or False :

$1 \times 5 = 5$

- (a) In Kinetics the magnitude of motion of a body is related to the amount of applied force.
- (b) Unlike parallel forces are divergent.
- (c) Lami's theorem is applicable to three concurrent forces in equilibrium.
- (d) Friction acting on a body depends on the area of contact.
- (e) Acceleration of a body is due to change in velocity with time.

4. (a) (i) Two forces act at an angle of 120° . The larger force is 40 kg and resultant is perpendicular to smaller force. Find the smaller force. 3

Or

- (ii) Find the angle between two equal forces 'P' when their resultant is $P/2$. 3
- (b) The following forces act simultaneously on a particle
 - (i) 20 kg at 50° to horizontal
 - (ii) 15 kg horizontally

(iii) 12 kg at 120° to horizontal

(iv) 25 kg at 220° to horizontal.

Find the magnitude and direction of their resultant. 5

5. (a) (i) State Varignon's principle of moments for concurrent forces. 2

Or

(ii) Define moment. How a moment of force can be geometrically represented? 2

(b) State Lami's theorem. A body of weight 70. kg is suspended by two strings of 4m and 3m length attached at same horizontal level 5m apart. Find the tension in strings.

1+3=4

(c) (i) A weightless rod of 120 cm length is supported at both ends. The support at left can't bear pressure more than 30 kg. A weight of 70 kg attached to the Rod at a point 'C', such that the left support is about to fall. Find the distance of 'C' from left support. 3

Or

(ii) Find the value of two like parallel forces acting at 40 cm apart and whose resultant is 70 gm. The resultant acts at a distance of 15 cm from left force. 3

6. (a) (i) Distinguish between Centre of Gravity and Centroid. 2

Or

(ii) Show the position of centre of gravity for a Hemisphere and Semicircle with sketch. 2

(b) Find the position of centre of gravity for plane lamina shown in Fig-I below : 6

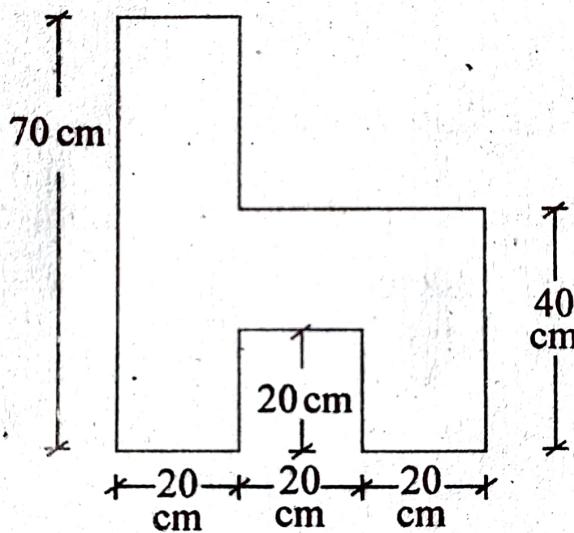


Figure - I

7. (a) (i) State the law of Static friction. 3

Or

(ii) Define the terms : 3

(i) Co-efficient of friction

(ii) Limiting friction

(iii) Angle of friction.

(b) A body of 60 kg weight is moved up an inclined plane of inclination 25° with horizontal by applying an external horizontal force of 30 kg. Find the Co-efficient of Friction. 4

8. (a) (i) Give expression for Moment of Inertia for a triangular lamina about the base and the axis passing through centre of gravity but parallel to base. 2

Or

(ii) Explain theorem of Parallel axis. 2

(b) Find the MOI of the plane lamina about line AB, shown in Fig. II below : 6

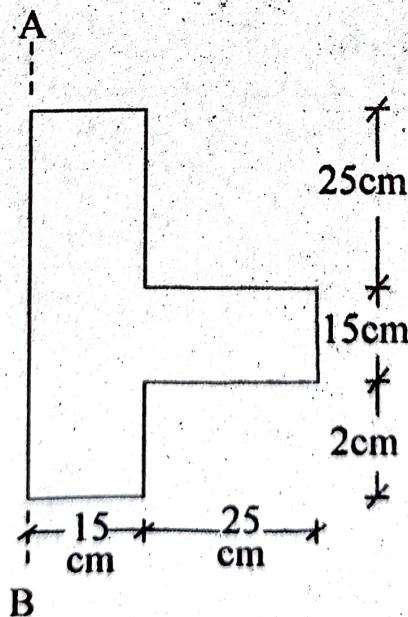


Figure - II

9. (a) (i) Write the equations of motion under gravity. 2

Or

(ii) Write the units of Velocity, Acceleration, Work done and Power. 2

(b) (i) A body starts from rest with a constant acceleration of 1.5 m/s^2 . After what time its velocity will be 9.5 m/s and what distance it will travel during this time. 3

Or

(ii) The motion of a body is given by equation $S = 3t^3 + 2t$. (S-distance and t-time). Find the velocity (after 3 seconds) Acceleration (at the end of 4 seconds) and Distance Coverd in 6 seconds. 3

(c) Find the Kinetic Energy of a bullet of mass 60 gm moving with a velocity of 800 m/sec.

$1\frac{1}{2} \times 2 = 3$

(d) Find the work done is drawing a bucket full water of 15 kg weight from a 20m deep well. 2

10. (a) (i) Write the expression for friction in a machine in terms of effort. 2

Or

(ii) Define efficiency of machine. Distinguish between Reversible and self-locking machine. 2

(b) In a simple wheel and axle the radius of wheel and axle are 25 cm and 5 cm respectively. If an effort of 50 kg lift a load of 600 kg, find the efficiency of the machine.

3